logo
Регистрация
Вход

Найти диагональ прямоугольника разными способами онлайн

Калькулятор периметра прямоугольника
Калькулятор площади прямоугольника
Калькулятор диагонали прямоугольника
Калькулятор стороны прямоугольника
Угол между диагоналями прямоугольника
Калькулятор периметра квадрата
Калькулятор площади квадрата
Калькулятор стороны квадрата
Площадь параллелограмма
Периметр параллелограмма
Угол между диагоналями параллелограмма
Калькулятор стороны параллелограмма
Калькулятор высоты параллелограмма
Калькулятор угла параллелограмма
Ошибки и пожелания
vkontakte
odnoklassniki
twitter
mail

Одна из основных фигур курса математики – прямоугольник. Впервые о нем заговорили еще в Древнем Египте, а позже и в Древней Греции. Именно свойства его диагоналей помогают решить многие задания учебного курса. Подход, который сейчас используется в геометрии разработал Евклид. Формулы, представленные в данной статье, пригодятся как при решении домашних упражнений, так и на ЕГЭ. Именно такие задачки помогают набрать недостающие баллы, поэтому ими не стоит пренебрегать.

Диагональ прямоугольника через его стороны

Рис 1

Если заданы хотя бы 2 стороны, то вычислить линию, соединяющую противоположные вершины, будет довольно просто. Применяется классическая теорема Пифагора. Достаточно подставить приведенные в дано числовые параметры в виде суммы квадратов под корнем:

Где a, b – это стороны, а d – прямая, которую мы ищем.

Диагональ прямоугольника через площадь и известную сторону

Рис 2

Когда в дано есть S и одна сторона, то узнать искомое значение можно используя следующее равенство:

Где D – это прямая, которую необходимо найти, a и b – любая заданная сторона, а S – площадь.

Диагональ прямоугольника через периметр и сторону

Рис 3

Когда задан периметр (сумма сторон) и, хотя бы одна сторона, отрезок, соединяющий несмежные точки высчитывают так:

Где P – сумма сторон, a и b – любая заданная сторона.

Рассчитать искомый отрезок можно и через соотношение сторон и площадь.

Диагональ прямоугольника через диаметр описанной окружности

Рис 5

Поиск отрезка через описанную окружность еще более прост, здесь даже не придется проводить расчеты: D = d

Где d – это обозначенный диаметр.

Различить вписанную/описанную окружность легко. Когда геометрическое тело вписано куда-то, то оно всегда будет находиться в другой фигуре. Когда окружность описана, то она находится снаружи, она как бы описывает другое геометрическое тело. Описанные фигуры задевают собой точки, а вписанные – касаются сторон.

Диагональ прямоугольника через радиус описанной окружности

Рис 4

Для расчета искомого отрезка через описанную окружность нужно провести вычисления, где: D = 2R

Где R – это заданный радиус.

Диагональ прямоугольника через площадь и острый угол между диагоналями

Рис 8

Если необходимо узнать прямую, соединяющую вершины 4-хугольника, это можно осуществить с помощью двух диагоналей. Для получения ответа к задаче понадобится sin β между ними и S (произведение длины и ширины). Расчет проводится с равенством:

Где соответственно S – это площадь, а sin β – это острый угол, расположенный внутри фигуры (меж пересекающимися прямыми).

Если в 4-хугольнике расчертить 2 отрезка, объединяющие несмежные вершины, то они будут равны меж собой (все 4 отрезка), а точка пересечения разделит их пополам.

Пересечение всегда происходит в геометрическом центре самой фигурки. Этот же центр является центром описанной окружности.

Диагональ прямоугольника через угол прилегающей диагонали и длину стороны прилегающей к этому углу

Рис 7

Когда одна из сторон 4-хугольника прилегает к углу, то просчитать отрезок, соединяющий вершины тоже возможно:

Где b – это сторона, прилегающая к углу, а cos a – это тот самый угол.

Косинус угла в треугольнике с прямым углом рассчитывается по формуле – длина соседней стороны, разделенная на гипотенузу. Синус – это противолежащий катет, разделенный на гипотенузу. Либо можно поступить еще проще, подсмотрев в таблицу Брадиса.

Диагональ прямоугольника через угол прилегающей диагонали и длину стороны противоположной этому углу

Рис 6

Чтобы найти нужный отрезок внутри четырехугольника, должен быть задан угол, прилегающий к искомому отрезку и сторона, противоположная углу:

Где a – это сторона четырехугольника, а sin a – это прилегающий угол.

Длинная сторона 4-хугольника– это длина, а короткая – его ширина. Помните, что каждая сторона одновременно является высотой.

Что такое диагональ прямоугольника, когда требуется ее вычисление

Прямоугольник – это частный случай параллелограмма. Иначе 4-хугольник с попарно равными сторонами, параллельными друг другу, а также равными прямыми углами по 90⁰. Сумма углов четырехугольника составляет 360⁰.

Диагональ разделяет фигуру на два новых элемента – треугольники с прямым углом. Это прямая, объединяющая противоположные вершины. Имея 2 прямоугольных треугольника, отрезок уже можно рассчитать по теореме Пифагора. По теореме гипотенуза – это квадрат из суммы катетов (обозначенных сторон треугольника), возведенных в квадрат.

Линии, соединяющие противоположные точки в четырехугольнике всегда пересекаются друг с другом.

Отрезок обозначают как d или D. Если названы все точки, то его можно называть в соответствии с ними – AC или BD.

Знания о линии, проходящей через несмежные точки 4-хугольника может понадобиться в легких геометрических упражнениях, так и в более сложных многоуровневых задачках, которые появляются на ЕГЭ. Свойства данного отрезка помогают находить важные параметры прямоугольника. Зная данные обеих линий, соединяющих противоположные углы, можно рассчитать S геометрического тела.

Перед решением любой геометрической задачки рекомендуется сделать чертеж и обозначить всю заданную информацию. Так будет значительно проще сосредоточиться на искомом значении.

Если регулярно решать тесты по геометрии, то формулы легче запомнятся, а их применение будет доведено до автоматизма.


© 2016-2022 / Tamali.net – сайт помощник в заполнении и печати бланков, форм и документов. Калькуляторы и конвертеры, различные инструменты.